

# HHMI-UC STEM Faculty Learning Community Webinar

Today: Experiments in Active Learning in Genetics Classes Susan Strome Distinguished Professor of MCD Biology UC Santa Cruz



# Experiments in Active Learning In Genetics Classes

Susan Strome MCD Biology UC Santa Cruz sstrome@ucsc.edu

#### Overview

- Lessons from Teaching Workshops
- Active learning in my Genetics class
  - diverse strategies to teach "bottlenecks"
  - movies in advance of class
  - group work in class
- Assessment
  - define learning objectives & align exams with those
  - pre-tests and post-tests
  - clickers in class

## Lessons from Teaching Workshops

Indiana University Workshop in 2003

- identify a bottleneck in student learning
- identify misconceptions that impede student learning
- design a lesson to teach the bottleneck
- assess the effectiveness of the lesson

Summer Institute Workshop at CU-Boulder in 2015

- scientific teaching
- 3 themes: active learning, inclusivity, assessment
- design teaching modules "backwards"
- put more responsibility for learning on students
- encourage group work in class

#### My Bottleneck in Genetics: Chromosomes

The big questions:

- Which chromosomes in a nucleus are similar?
- Which are identical?
- Which are completely different?

- How do chromosomes align during mitosis?
- How do chromosomes align during meiosis?

Use pipe cleaners to represent the chromosomes in a fruit fly





#### Add beads to represent genes (colors can show alleles)



Leave just the different color/allele beads ... to mark the homologs



#### Duplicate the chromosomes in preparation for division



Student activities (in class, discussion sections, workshops)

Using pipe cleaners and beads:

Set up chromosomes in a 2n=6 cell in G1 Show me the homologs, etc. Prepare chromosomes for mitosis or meiosis Model mitosis and meiosis Model trisomy vs triploidy

- Devise 2D drawings
- Practice going back and forth between pipe cleaners and drawings as needed
- Apply pipe cleaners and beads to new situations

Set up chromosomes in a 2n=6 cell in G1

Prepare chromosomes for mitosis or meiosis







Model trisomy vs triploidy



normal

#### Model trisomy vs triploidy



#### Assessment: Pre-tests and Post-tests

Students were asked to classify cartoons of chromosomes and alleles before the pipe cleaner exercise, on the midterm, and on the final



#### Using pool noodles to discuss crossing over and % recombinants





Pool noodles allow us to create many different cross-over events and see the consequences e.g. recombinant and non-recombinant chromosomes that will end up in gametes (egg and sperm). Below is one event:



## Activation of Gene Expression

How do genes get "turned on" in response to signals? A skit of this brings the process to life, and helps students think about dynamic processes and the importance of drawing cartoon renditions. Example: How steroids (e.g. testosterone) turn on genes for maleness, a lesson designed by Roger Innes

A description of the process in words:

- 1) Steroids bind to proteins called "receptors".
- 2) Steroid receptors dimerize and bind DNA.
- 3) Steroid receptors that are bound to DNA recruit other proteins that function as "co-activators".
- 4) Coactivators recruit RNA polymerase, which binds to the start point of a gene and initiates transcription.

#### Scientists create cartoons



I ask the students to create a <u>living model</u> depicting how testosterone "activates" expression of specific genes!

I need a group of 4 ----> 2 folks are testosterone receptor 1 is coactivator 1 is RNA polymerase

Using the proper sequence of events, <u>act out</u> the process of gene activation according to the following rules:

- Testosterone must be perceived.
- A gene with the following sequence must be found.

GAGCGCATTATTATGCGCTC

- Demonstrate the proper protein-DNA and protein-protein interactions.
- What is the end result?

The students not acting out the living model direct the activities (the "fishbowl technique"; Silberman, 1996).





# AGG CTAACCGGC CGATTCTGCGCGCGCGCGATTCTGCGCGCGAGTACTT

WISCONSI

testosterone receptors with their testosterone "caps"

# AGG CTAACCG CGATAG CG CG ATAG CG CG ATTATTAT CC CC C CG ATTG CC CG ATTG CC CG ATTG CG CG ATTG CG CG ATTG CG CG ATTG CG CG AGTACTT

# 

coactivator

# GTAACCGGGGTTATTAT CTCATGAATAC GATTGGCCGATTGATGGCGGATTAATAC SAGTACTTATG

RNA polymerase



#### Assessment:

All students were asked to

- 1) Depict the steps of gene activation by testosterone in cartoon form.
- 2) List 1 or 2 questions that this modeling exercise and their cartoon raised in their mind.

#### Outcome:

- Students realized the utility and importance of modeling ... and how it can help them identify what they do and <u>don't</u> understand.
- 2) Many students posed intellectually sophisticated questions, similar to those that scientists would ask.

## Lessons from Teaching Workshops

Indiana University Workshop in 2003

- identify a bottleneck in student learning
- identify misconceptions that impede student learning
- design a lesson to teach the bottleneck
- assess the effectiveness of the lesson

Summer Institute Workshop at CU-Boulder in 2015

- scientific teaching
- 3 themes: active learning, inclusivity, assessment
- design teaching modules "backwards"
- put more responsibility for learning on students
- encourage group work in class

Scientific teaching

- teach classes the way we do research
- inquiry-based, critical thinking, learning vs performing
- work & learn in teams
- 3 themes
  - active learning (engage students in each class session)
  - inclusivity (teach to the diversity of students in a class)
  - assessment (how do the instructor & students know the students have met the learning objectives)

Design teaching modules "backwards"

- define learning objectives/goals (concepts & skills)

-> then design assessments

-> then design lessons

- align assessments (and exams) with objectives

Put more responsibility for learning on students

- tell students what the learning objectives are and the outcomes that will show they have met the objectives

- convey confidence in their ability to learn and succeed

## My current "active learning" Genetics class

- 80-85 students instead of >200 students
- Each class session has clear learning objectives
- I cover some material in advance of class in Doceri movies (on YouTube)
- 30-50% of each class is group work (21 groups of 4)

Problems on in-class discussion sheets

Teaching team members (6 of us) circulate among groups

Class sessions are multi-media: outline on document camera, some

PowerPoint slides, skits, tubs of pipe cleaners & beads

Clicker questions for formative assessment during each class

I encourage group discussion

We discuss all answer options

Assessments before and after

Chromosomes, mitosis, and meiosis

Genetics Concept Assessment from Smith, Wood & Knight

The teaching team meets and strategizes each week

Let's keep sharing ideas and strategies via ... webinars meetings (e.g. UC-FLC mtg at UCR) Summer Institutes skypes, calls & emails

My email is sstrome@ucsc.edu